Almost orthogonal vectors
William J. Martin, Worcester Polytechnic Institute

Let \(N(d) \) denote the maximum size of a set of lines through the origin in \(\mathbb{R}^d \) pairwise at angle 89° or more. Since \(N(d) = d \) for \(d \leq 57 \), some are surprised to learn that \(N(d) \) is an exponential function of \(d \), as proved by Shannon long ago. This motivates us to examine more carefully spherical codes with all inner products within \(\varepsilon \) of zero.

Let \(\varepsilon = \varepsilon(d) \) be a positive decreasing function of \(d \) tending toward zero. We ask for the largest size of a set \(X \) of unit vectors in \(\mathbb{R}^d \) such that \(|\langle x, y \rangle| \leq \varepsilon(d) \) for all \(x, y \in X \) with \(x \neq y \). How large must \(\varepsilon(d) \) be in order to allow \(|X| \) to grow exponentially with \(d \)? Where does linear growth give way to quadratic growth? I have mostly questions and few answers.

In this talk, we will explore bounds and constructions for spherical codes with all inner products very close to zero. I will discuss connections to frames, association schemes and quantum information theory and I will mention new results of Bukh and Cox on the optimal value of \(\varepsilon \) in the case where \(|X| = d + k \) where \(k \) is constant.